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RESUME

On dérive un systéme fermé de trois équations simultanées aux
dérivées partielles pour résoudre 1'intensité moyenne et la variance
de 1'intensité de faisceaux laser focalisés se propageant dans un milieu
turbulent. Ces &quations sont uniformément valides & tous les niveaux
de scintillation. Des exemples de solutions calculées numériquement
sont en excellent accord avec des mesures obtenues dans 1l'atmosphére
et en laboratoire. On dérive de ces &quations une expression analytique
de la diffusion par la turbulence et on démontre que celle-ci est plus
précise que la formule généralement employée et tirée du concept du
diamétre de cohérence p,. Dans la limite des scintillations faibles,
la solution pour la variance de 1'intensité recoupe les résultats
classiques de la théorie de perturbation. (NC)

ABSTRACT

A closed set of three simultaneous partial differential equations
is derived for the solution of the average irradiance and the irradiance
variance of focused laser beams in a turbulent medium. The equations are
uniformly valid for arbitrary scintillation levels. Examples of solutions
calculated by finite difference techniques agree very well with experi-
mental data in the atmosphere and in the laboratory. An analytic expres-
sion for the turbulence-induced beam spreading is obtained and shown to
be more precise than the commonly used formula based on the coherence
diameter po. In the weak scintillation limit, the irradiance variance
solution agrees with the classical perturbation results. )

A

-

Accession For

DTIC TAB I
Unannounced r
Justification_

e
By SR
Dictrit i i/
Avail- T iy Codes
' i e orp 7
Dis Lpooial

NTIS GRA&T k*

Pt




UNCLASSIFIED
ii

TABLE OF CONTENTS

RESUME/ABSTRACT
1.0 INTRODUCTION . tiiiiiinnnnnenetnseosesoeeasoeenennnsnnnonnnnnns 1
2.0 THEORETICAL BACKGROUND ..\ iitiieinitenunnanenenennsonaeonnnnnas 3
3.0 CLOSURE RELATIONS ittt it iinnneesetennnenonnonnenannnnnneas 7
4,0 COMPARISON OF SOLUTIONS WITH DATA .....vtvirrerernennnnnonnnnns 22
5.0 SIMPLIFIED SOLUTIONS ..itiiitiiinieteesntsenronesannosssennenas 30
5.1 Average irradiance ..........iiiiiiiiiiiiiiriiiiiiiiaaan 30 :
5.2 Irradiance VATIANCEe ... ..ieuveiuronrsonsssssossssstsannnns 38 §
6.0 CONCLUSION 4 \ttsnesestteneeeeeteeeeeeeiaeeerennnnnn, 39 '
7.0 ACKNOWLEDGMENT S ... i iiiiiiiinneerrnoeoessrosanosoeanesssnnnnons 40
8.0 REFERENCES ...ttt ittt iienenenanseennnnennncanss 41
TABLE I
FIGURES 1 - 10
3




UNCLASSIFIED
1

1.0 INTRODUCTION

Atmospheric turbulence can seriously affect the propagation of
a laser beam. The refractive index turbulence induces phase and ampli-
tude fluctuations which cause the beam to scintillate or break up in
several random patches, to lose its spatial coherence, to wander about
its axis, and to spread out. Numerous analytical treatments of these
phenomena have already been published. The analytical Rytov method,
fully documented in Refs. 1 and 2, gives excellent results in the weak
scintillation regime, i.e. at small propagation distance and/or turbu-
lence strength. However, it is well-known that the Rytov method fails
when irradiance fluctuations reach a certain level: theory predicts an
unlimited increase of the irradiance variance whereas experiments
definitely show saturation. Many recent models deal with this problem
and predict, with variable degrees of accuracy, the phenomenon of satu-
ration. A first approach, known as the renormalization technique, is
described in Ref. 2. For example, it is used by De Wolf (Refs. 3-6)
to predict the saturation of the irradiance variance. A second approach
consists in solving the differential equation for the fourth-order
statistical moment of the complex electric field closed by the local
application of the method of small perturbations. This method is
reviewed in Ref. 7 and examples of solutions showing saturation are
given in Refs. 7-11. A third approach is based on the extension of
the Huygens-Fresnel principle to turbulent media (Ref. 12). Saturation

results derived from various applications of this principle may be found
in Refs. 13-17.

The models listed in the preceding paragraph are generally well
corroborated by measurements. However, they all require lengthy
calculations to compute the average irradiance and the irradiance variance
profiles of finite laser beams. One has either to solve a fourfold
partial differential equation or to evaluate multiple integrals at each
spatial point. In particular, these models are not suitable for the

calculation of nonlinear propagation in the presence of turbulence,
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such as thermal blooming. To fill this need, the present report pro-
poses a calculation method of beam propagation in turbulence which is
numerically simple, fast and uniformly applicable to arbitrary scin-

tillation levels.

In Ref. 18, we developed a model in the form of linear, second-
order partial differential equations for the first- and second-order
moments of the complex wave amplitude. These equations can be easily
solved numerically to calculate the average irradiance and the irradiance
variance profiles of laser beams in turbulence. The approach is similar

to that used in the calculation of turbulent shear flows (see for

instance Chap. 5 of Ref. 19). The differential equations for the statis-
tical moments of the complex wave amplitude are derived from the sto-
chastic wave equation. Since the latter is quasi-linear owing to the
nonhomogeneous refractive index, the resulting system of equations is
unclosed. To resolve this difficulty, expressions are sought to relate
the unknown or higher order moments to the first- and second-order
complex-amplitude moments. In Ref. 18, these closure relations were
derived from mostly empirical considerations but the accuracy of the
resulting solutions was so consistent that it prompted us to investigate

further into this approach.

The closure relations necessary to solve the average irradiance
were rederived in Ref. 20 in a fully consistent manner from the governing
wave equation. However, one empirically based relation is still needed
to predict the higher order irradiance variance. The empirical input
appears in the form of one universal complex constant. To eliminate
this constant, we would have to consider the equation for the covariance
of the complex amplitude and, thus, go back to the complexity of at
least fourfold partial differential equations which we set out to avoid.

Hence, we believe that the level of empiricism remaining in the model is

acceptable and certainly well compensated for by the simplicity it
affords.
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The results of Ref. 20 are strictly applicable to collimated
beams. In this report, we extend the model to include focalization.
Section 2.0 is a short review of the theoretical background. Section
3.0 gives the closure relations. Section 4.0 compares solutions with
data taken in a simulation experiment and in the atmosphere. Finally,
section 5.0 presents simplified analytical solutions valid under practical

operating conditions.

This work was performed at DREV between October 78 and November

79 under PCN 33B07, Atmospheric Propagation of Laser Beams.

2.0 THEORETICAL BACKGROUND

Our mathematical model for optical wave propagation is described
in Refs. 18 and 20, In short, the scalar electric field E of a monochroma-
tic wave propagating in the z direction under negligible polarization

effects satisfies the equation

k2N2
+

31 pg2

where 23 is the three-dimensional gradient operator, k = now/c is the
optical wave number, n, is the unperturbed index of refraction, w is
the optical angular frequency of the source, ¢ is the speed of light
in free space, and N is the instantaneous random index of refraction.

The electric field E is written as follows:

E = A exp[ik(¢+2z) - iwt], (2]
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where A and ¢ will be specified below. Upon substituting eq. 2 for E
in eq. 1 and making the paraxial approximation valid for propagation in

atmospheric turbulence, we obtain after separation

<i— + 4\/«.2> !’ = Z(N-no)/no, [3]
gz

3 i o2

o+ Vev N\ A+ 1/2 AV-V - — V24 = 0, [4]
3z T ~ 2k

where ¥V is the gradient operator in the plane normal to the 0-z axis,

and

In obtaining eq. 3, it was assumed that (N-n.)/no. <<1 which is well

verified in atmospheric turbulence.

The separation into eqs. 3 and 4 is different from common practice.
Consequently, functions A and ¢ differ from classical amplitude and
phase. The advantage of this particular separation is that the equation
for V is independent of A. It is easy to verify that eq. 3 is the
paraxial form of the eikonal equation of geometrical optics. Hence,
the surfaces ¢ = constants are the geometrical-wave fronts and V(z,x)
is the component, in the transverse plane, of the unit vector parallel
to the geometrical ray passing through the point (z,x). V(z,r) can

also be interpreted as the vector angle subtended by the ray at that
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point and will be referred to as the angle-of-arrival. . :nully, from
eq. 2, it follows that A is the complex amplitude detfined on the geo-

metrical phase fronts. This complex amplitude embodics the diffractional

phase.

Since the refractive index N is a random function, eqs. 3 and 4 are
stochastic equations. There is no known general method of solving the
random functions V and A. Even if that could be achieved, it would yield
much more information than required in practice. Here, the stochastic
eqs. 3 and 4 are used to obtain the differential equations for the
statistical moments of v and A. We limit ourselves to the first- and
second-order moments whichlend themselves to straightforward physical

interpretations.

The random functions are written as sums of an average and a

fluctuating part, i.e.:

N=<N>+n; <n>=0, [6]
M = <¥> + v <.-\L> =0, [7]
A= <A> + a; <a> = 0, [3]

where the angular brackets denote ensemble averaging. The equations
for the moments are obtained by taking the ensemble average of the
stochastic equations for V, A, AA and AA* derived from the governing

eqs. 3 and 4. We find:
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(L * <¥>'2> V> = - 1/2 3<yey ¢ L<N> - no) /o, [9]
3z

(é._ + <'\!‘>.Z) <A> + 1/2 <A>z.<!> - 1__ V2<A> = _'\ZJ-<~V3>+ ]_/2<:az-¥’> R

3z 2k
[10]
3 i o N i
—_—+ <V>-z <ga> + (aazzc<l> - —— V<<aga>» + -<2ﬂ'28>
3z 2k k
{11]
= - ’z-<'_\\/‘aa> - 2<av>-l<A> - <A><az'-'\L> s
3 i 2 2 4%
— + <V>.9Y \caa*> + <aa*>y-<V> - — [<a*V<ca> - <aVea*>]
3z 2k
= - Z-gxaa*> - <a¥>ﬂz<A>* - <a*X>'YfA> [12}

- 1/2 <A>*<a@ey> - 1/2 <A><a*{-y>

where the superscript * denotes a complex conjugate.

The system of eqs. 10-12 for <A>, <aa> and <aa*> is mathemati-
cally unclosed insofar as it contains more unk:.owns than equations,
namely the moments <ya>, <vaa>, <vaa*> and <a¥-v>. In principle, onc
could derive equations for these moments using a procedure analogous
to that used in obtaining eqs. 10-12. However, one would quickly

realize that this technique leads to equations involving still higher
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} order and unknown moments. This is the classical closure problem which

| is always encountered in the treatment of statistical phenomena governed
by nonlinear and/or quasi-linear stochastic equations such as egs. 3 and 4.
Of course, there is no exact method of solution for this problem since

the complete mathematical model contains an infinite number of equations.
tlence, workable models require closing the hierarchy of equations after
moments of a given order. This can be accomplished only through
approximations regarding the higher order moments for which the equations
have been left out. In this paper, we derive four relations to express

<ya>, <vaa>, <yaa*> and <a¥-y> as functions of <A>, <aa> and <aa*>.

3.0 CLOSURE RELATIONS

The derivation of the closure relations is based on threce prin-

cipal hypotheses.

1. The fluctuating angle-of-arrival y is statistically homoge-
neous and isotropic in the plane transverse to the 0-z axis. This
approximation follows from the hypothesis that the refractive index is
statistically homogeneous and isotropic and from the paraxial approxima-
tion. Indeed, since the medium is homogeneous and isotropic and since
the average ray angle <V> is small, the rays reaching a plane z traverse
statistically equivalent paths. Hence, the covariance function of y
should depend only on the relative positions of the observation points a

in plane z.

II. The random complex amplitude and angle-of-arrival are only
weakly correlated. This approximation is based on the observation that
the fluctuating complex amplitude a(z,r) is the result of repeated
interactions with the angle-of-arrival over the complete propagation
path between 0 and z. Hence, a(z,r) depends on many processes indepen-

dent of the local angle-of-arrival x(z,z). Moreover, eq. 3 shows that
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v is independent of "a". Thereforc, the hypothesis of weak correlation

appears very plausible. More specitically, we assume

2 1/2
<v a > << <v-v>l/ <I> / [13a]
X8, XX ,

1/2
<y va > << <yey> <[> {13b]
~MT2 2 -~ ’
<y vaa> = <vy><aa>+ {|terms|<< <y.y><I>} [13¢]
~it2 12 ~t2 1 2 ’
etc ,

where <I> = <A><A>* + <ga*> is the average irradiance. The subscripts
1 and 2 refer to the separation points of the covariance functions;

where no subscripts are used, the midpoint between 1 and 2 is taken.
ITI. The covariance functions involving the fluctuating complex

amplitude are quasi-homogeneous and quasi-isotropic in the transverse

plane. More specifically, we set

<a(z , z, >= F z , ;'::-l-—":l yZ ) - 14
a(z ,x)alz ,p)>=F (2 .z ) 85, (2 2 51z -z D), [14a]
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a* , > = F 2z ; (z ,z ;jr -r
<a(z , r)a*(z .r) aa* (2,2, _1__2_2 ) Byplz vz iz 2 1),
(14b]
Under hypothesis I, eq. 9 becomes
S <>+ U>T<Y> = L(N>me) /o, [15]
9z

which shows that the average ray angle <V> is independent of the turbu-
lent fluctuations. The solution of eq. 15 for an initially spherical

phase front with radius of curvature F in a statistically homogeneous

medium, i.e. <N> = constant, is given by

<V> = x/(z-F). [16]

The equation for the fluctuating complex amplitude is obtained

by subtracting eq. 10 from eq. 4. We find, using eq. 16

—— a + *Va + a - 1923 = glz,x)> [17]
3z (z-F) (z-F) 2k
where
<A>Vev
g(z,r) = - LA> - ———— - Ur[ya-<ya>]+1/2[al y-<al y>] [18]
, .
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An implicit solution to eq. 17 with the boundary condition

a(0,r) = }iT+m a(z,r) = 0 [19]
is given by
a(z,r) = L(z,z; u,s) glu,3), [20]

where L(z,z; u,s) is an integral operator defined as follows:'

={=S1

L(z,r;u,8)gu,s) = [[ d?s g(u,s)exp 3 1 —
1r (u-2) 2(z-ujF-

The closure relations for <ya>, <a{-y>,<vaa> and <yaa*> are
derived by first multiplying eq. 20 by y, Y*V, ¥a and ya* respectively
and then taking the ensemble average. Hypotheses I, II and III are used
to simplify the statistical moments of the form <y(z,r) g(u,s)> which
are operated on by L(z,r;u,s). The details can be found in Refs. 18 and 20,

We simply recall the results here. They are

<az‘-¥‘> = - K <A>’ [22]

tThere is an error in the definition of the operator L in Ref. 20. The
error concerns the effect of the curvature F and disappears in the limit
of collimated beams. Since the solutions of Ref. 20 were calculated in
that limit, the error does not affect the results and conclusions.

]
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<ya> = - R * U <A>, [23]
<vaa> = - 1/2 P « ¥ <aa>, (24]
<yaa*> = - 1/2 Q « YV <aa*>, [25]
where
K=1/2 Lz,g;u,») ¥ N0 <wz,w(u,8)> , [26]
R = L(z,r; u,s) <y(z,p)v(u,s)>, [27]
P=R, (28]
i ~
Q = Real {R}, [29]
Equations 22-25 form the basis of our model, they relate the
higher order unknown moments to the lower order moments and, thus, close
} the system of equations for <A>, <aa> and <aa*>. The functional
relationships described by eqs. 22-25 are consistent with the physical
interpretation of the terms they model. The moment <a¥:v> which causes

the decay of the coherent amplitude <A> is proportional to <A>, and,

therefore, it survives for plane and spherical waves as indeed it should.
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But, the terms <ya>, <yaa> and <yaa*>, responsible for beam spreading,
are all proportional to gradients of the lower order mean-field quanti-
ties and, as expected, they vanish for plane and spherical waves. It is
noteworthy that these relations are analogous with expressions success-
fully used to model the turbulent momentum, heat and mass transport terms
in turbulent shear flows (see for example Chap. 1, 5 and 6 of Ref. 19).
However, they were not simply hypothesized here, they were derived in a

fully consistent manner from the governing stochastic wave equation.

Equations 26-29 show that the proportionality functions K, R, P
and Q are all integrals of the covariance of the angle-of-arrival
<y(z,r)y(u,s)>. An equation for v is obtained by subtracting eq. 15

from eq. 3, i.e.

AR RS TR A ~f2f~? + MJZX,= Eﬂ/no . [30]

Neglecting the nonlinear stochastic term y-Yv, which is valid for propa-
gation in turbulence since the fluctuating ray angle le remains small

throughout the propagation range, and using eq. 16 for <Y>, we have

icv
A
s

= Yn/n.. [31]

(B
N

(z-F)

Solving along the average geometrical ray that passes through the point

(z,r) and assuming that the path length along the ray can be approximated

by z in accordance with the paraxial approximation, we find
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x(z,g)zf dg LBl L gqpg, ¢ < 5y [32]

(z-F) no F-z

Therefore, the covariance of v is given by:

2z u
<.‘L(Z:I)!,(“»,§,)> . 1 fdg/ de _(E:f.)_ g_‘i)_
n3 A A (z-F) (u-F)

[33]

ey

1] _E_-_C_ ":-;E- .
'z.rvlrn<n [C-" r' = L] n[g’ £ ,§,]>

F-z F-u

Since the correlation scale of the index covariance function is
much smaller than the propagation distances of interest, eq. 33 can be

further approximated as follows:

u
2
w(z,Dyu,9> = = f g L&)
3 J  (z-F)(@u-F)
~ [34]
.NVr.Z,r.. / dt (n[g-n, T = £”+A] n[CsI:‘ - %2])

"1

-0

The vectorsr', r" and A are defined in Fig. 1 which illustrates the
geometrical features associated with the definition of the covariance

function of y. In the paraxial approximation, the vector A is given by

n3)

L =%

-2

= (35]
F-u

-
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>

FIGURE 1 - Configuration of the rays and geometrical definition of the
symbols for the calculation of the covariance function

<« (z,)y(u,s)>.

The integral over 1 has been worked out for homogeneous and isotropic
Kolmogorov turbulence (Refs. 1 and 2). The result for eq. 34 is

u
d; (C'F)z
(z-F) u-F) n2

3.44 c]r21
‘];/3 [.%A,QA + 2¢,§.¢]; << £y,

[0}

<v(z,py(u,s)> = [36]
u

1.62 C2
S LI R
f dg P ) m A1/3 la,a, + 2£¢§¢], A>> Lo,
¢}

where Cn is the well-known structure constant of the turbulent refrac-
tive index and Ko is the inner scale of turbulence. To simplify the
algebra, we propose the following simple expression connecting the two

asymptotic formula of eq. 36:

2.43¢c2 2 ,
<,\\,,(Z Jz)l(u,'§)> = __.___.__n._.._f dC (Q‘F) 1 :
" o (-F)-F) [+ (.3525)7) 170

1 a2
Arz, v 2| - -
{[AA ‘M’] 30[0% ¢ (L35 )2 QA’QA}'
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Before substituting eq. 37 for the covariance of v in eqs. 26 and 27
for the proportionality functions K and %, it is essential to match the
geometry associated with eq. 37 to that associated with the definition
of the operator L. This is best explained with reference to Fig. 2.
The operator L was derived exactly and thus applies to spherical phase
fronts. In particular, the argument of the exponential in eq. 21 is
the phase difference between wavelets originating at A and B and

arriving at P, i.e.

A¢ = k [CD - CB] . [38]

Since all angles are small as required by the paraxial approximation,

we have
o PR [39]
2(z-u)
2
T8 ~-AC [40]
2(F-u)
2 - 2
A =2 -s . [41]
F-z
Hence, from eqs. 38-40 it follows that
2
Pyp— Er e, (42}
1 2(z-u) F-u F-z
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which is identical to the expression in eq. 21. However, as shown in
Fig. 1, the geometry used to derive the covariance of y is such that the
transverse coordinate is not taken along circular arcs centered at z = F
but rather along lines normal to the ray passing through (z,r). ‘Thus,
the argument of the exponential in eq. 21 should be replaced by the

phase difference between the wavelets originating at A and C respectively
and arriving at P, plus the phase difference between the spherical wave

fronts passing through points A and C, i.e.

i
P
@)
o
+
Pl
|
v~}

Ad [43]

FIGURE 2 - Configuration of the rays and geometrical definition of the
symbols for the calculation of the modified operator

L(z,r;u,s)
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Hence, from eqs. 39-41 and 43, we find

re = k F+z-2u

Pur o5, (44]
2 2(z-u) F-u F-z

Therefore, eqs. 26 and 27 are slightly modified as follows:

Z o]
K = _1_15_/ du ﬂ d?s L. <v(z,rly(u,s)>
4n J (u-z) Y

(45]
.exp{ 1k Fre-2u 2 ,
2(z-u) (F-¢)?
z o
R = }.]S/ du [[dzs <y(z,r)y(u,s)>
27 (u-z)
o - Q0
[46]

{ ik F+z -2u 2}
* €XPp A
2(zu) (F-z)?

Equation 37 shows that the covariance of y is function of 42
alone in the transverse plane. Since the integral operator in eqs. 45 and 46

is also dependent on A? alone, the resulting proportionality functions

K and R depend on propagation distance z only.
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Equation 37 is substituted for the covariance of v in egs. 45 and 46.

The integration over the transverse plane can be performed analytically

to give
K(z) =
R(z)
where
G(vy)
H(y)
'Y =

3.24 C2 A b )
o /du/d,’ (F-2)*6(y) (47]
n2 gl A / (F-2) (F+z-2u)
2.43 2 z g )
= ___1_/_'31._ Q/ du/ dg (F-e)” n(v) , [48]
n3 £ ~ (F-2) (F+z-2u)
1 (o] [o]

iy
= (-iy)? {l - 3iy + [5/12 + iy + 3y )Ty T(5/6,-iV)
2 (-iy) ’
[49]
_j_'Y
= (-iy) <1 + [5/6+iY] -—5—-g73- r(s/e, —iv)}. [50]
(-iv)
2
k£1 (F+z-2u) (F-u) [51]
2(z-u) (F-£)?

and where £ =0.35 £, is the unit dyad and I'(5/6, -iy) is an incomplete

1
Gamma function as defined by formula 6.5.20 of Ref. 21,

The functions

G(y) and H(y) are plotted in Figs.3 and 4 respectively.
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The closure eqs. 22-25 together witn the eqs. 47 and 48 for the
proportionality functions K(z) and R(z) are sufficient to solve for the
average irradiance. However, to calculate the irradiance variance
profiles, we need a relation for the moment <Va-Ya>. The latter was
derived in a semi-empirical fashion in Ref. 20. As mentioned in the
introduction, a more theoretical treatment of <ya-Va> would require
solving for the covariance function of the amplitude, hence recourse to
multidimensional partial differential equations. This is beyond the
scope of the present report and, therefore, the result of Ref. 20
multiplied by a geometrical factor to account for focalization will be

simply taken here, 1i.e.

C F__—z./_z & <aa>; Z <2 ,
= "A
F-z z
<Ta-ga> - = Vi<aw> = [52]
4
c Fr2/2 ke <aa>; 2 >z, ,
F-z zi

where C is a universal empirical constant whose best rounded value is
€=0.5-0.01 i and Zy is a length scale defined in the next section.
Finally, by virtue of the approximation of quasi-homogeneity and quasi-

isotropy, i.e. eq. l4b,and from standard diffraction results, we have

t+ In Refs. 18 and 20, the constant was chosen equal to 0.3 - 0.01 i. The
effect on the resulting solutions for the irradiance standard deviation
is less than 10%. These differences in the choice of C are explained
by the different methods of evaluating the functions K(z) and R(z).
In Ref. 18, we limited ourselves to real and purely empirical expres-
sions; in Ref. 20, we used asymptotic formulas only; but, here, we
calculate K(z) and R(z) from the full integral eqs. 47-48.
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. 2
L [<a*v2a> - <avZa*>] ~ 9oz il

2k 2 (F-2)

V2<aa*> » [53]

where ¢ is the diffractional far-field half-angle beam divergence. For

a Gaussian beam with an irradiance e-folding radius Wy O = l/kwo.

4.0 COMPARISON OF SOLUTIONS WITH DATA

After substitution of eqs. 22-25, 52 and 53 for the higher order
moments in eqs. 10-12, we obtain a closed set of partial differential
equations for <A>, <aa> and <aa*>. In nondimensional form, these

equations are

é._. + P .a_. A> - .i_}z.vz <A> - bR(n)V2<A> = - .<_A_i_ - lK(q)(A>,
an n-f 3p 2 °f P (n-f) 2
[54]
(E—-+ e é—-) <aa> - }E_Vz <aa> - l—)-1?(1'))\72 <aa> + iT(n)<aa>
an  n-f 3p 4 ° 2 P
[55]
= - giiii + K(n)<A><A> + 2b F(n) v <A>-ZD<A> s
(n-£)

3 2 ,
(-—-+ e 3 ) <gaa*> - ’f o ¢ <aa*> - E'Real[‘);(n)]\"z <aa*>
an  n-f 3p (f-n) 2 © 0
[56]
2<aa*>
= - ——— + Real[K(n)]<A><A>* + 2b Real[R(n)]V <A>+y <A>*
(n-f) ©e “e
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where n and p are nondimensional variables

n = z/zA and p = r/wo, [57a,b]

and b and f, similarity parameters

fi

za/kwg and f= F/z, . [58a,b]

The length scales W, and z, are respectively the representative radius

of the unperturbed laser beam and the fading distance of the average

amplitude given by

ZA - 1/C12/11 7/11 , [59]

Finally, the proportionality functions are

n Y
() = éLf;i J/~ dx €07 6 , [60]
(o]

(£-n)2 (f+n-2y)

I

R(n) = 232 / / ax EXMM (61]
76 (£-n) (£+n-2y)

e TRV IR e W Wy e
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c (f-n/2) 1 : nel |
(f-n) n
r(n) = [62]
C (f-n/2) N onos1,
{(f-n)
with
y = No (f+ﬂ-2Y) (f'Y) , [63]
2(n-y) (£-x)2

which gives rise to a third similarity parameter

— 2
ne = kgl/zy o [64]

However, for n>>n,, the solutions become virtually independent of n..

Equations 54-56 form a closed set of partial differential
equations, in three-dimensional space only, for the solution of the
statistical moments <A>, <aa> and <aa*>. General solutions to these
equations can be worked out in terms of Green's functions but this leads
to complicated multiple integrals that are very troublesome and lengthy
to evaluate. We find it much more convenient to solve the finite
difference version of eqs. 54-56. This approach is straightforward, *
involves no particular difficulty except in the near vicinity of n = f,

and is applicable to arbitrary beam profiles.

The quantities of interest are the average irradiance and the

irradiance variance. The average irradiance is defined by
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<1> = <A> <A>*+<aa*> , [65]
and the irradiance variance by
02 = <(I- <I>)2> ., [66]

I

In terms of amplitude moments, we have

= <aa*aa*> - <aa*>2 + 2<A ><aa*a*>

+

2<A>*<gaa*> + 2<A><A>*<aa*> + <A><A><aa>* [67]

+

<A>*<A>*<aa> .

Therefore, the irradiance variance depends on statistical moments of
orders three and four. Instead of trying to derive a closed set of
equations for these higher order moments, we prefer, as a first and
simpler attempt of solution, to make a hypothesis regarding the probabi-
lity distribution of the complex-amplitude fluctuations. We have shown
in Refs. 22 and 23 that the hypothesis of normal distribution for the
complex amplitude a(z,r) constitutes a consistent approximation over

the complete propagation range. The assumption of normal statistics

for a(z,r) gives

<a*a*a> = <aaa*> = 0 | [68]
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<aa*aa*> = 2<aa*>? + <aa><aa>* - [69]

Hence, eq. 67 becomes

0% = <aa*>2 + <aa><aa>* + 2<A><A>*<agz*>

+ <A><A><aa>* + <A>*<A>*<gg> .,

Therefore, both the average irradiance and the irradiance variance can

be calculated from the solutions of eqs. 54-56. It is noteworthy that

the implications of normal statistics for a(z,r) are explicitly and
completely specified by eqs. 68 and 69. Most importantly, this hypothesis
was not needed to derive the closure relations which form the basis of

our model.

To verify our model, a laboratory experiment was designed which
‘ allows complete control over the turbulence parameters (Ref. 24). In

short, the refractive-index turbulences are produced by creating an

| unstable vertical temperature gradient in a tank filled with water.

; This is simply done by heating the water at the bottom of the tank and

é cooling it at the top. The tank is 1.5 m long, 0.6 m deep and 0.4 m

| wide. The propagation path is increased by folding the beam lengthwise.

Typically, the index structure constant C, is 10707173,

» Figures 5 and 6 show the measured normalized average beam radius

: w/wWo plotted versus propagation distance for collimated (f = ») Gaussian
beams with wo equal to 6.0 mm (b=0,0016) and 3.0 mm (b=0.0064) respecti-
vely. The data were taken by slowly traversing a point detector across
the beam through its center. The radius w was calculated from the

measured average irradiance profile <I(r)> according to
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FIGURE 5 - Normalized beam radius plotted versus normalized propagation
distance; b = 0.0016, f = », no = 7.0, O : data measured
in laboratory turbulence. —— : finite-difference
solution of eqs. 54 and 56,

0 2 4 6 8 10
LTEN
FIGURE 6 - Normalized beam radius plotted versus normalized propagation
distance; b = 0.0064, f = », n, =2 7.0. [J : data measured
in laboratory turbulence. ———————: finite-difference
solution of eqs. 54 and 56,
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r3 <I(r)>dr/f T <I(r)> dr. [(71]
0

o

]

o)

The solid curves rcpresent the theoretical solutions calculated from
eqs. 54 and 56. The predicted beam spread is smaller than the measured
spread by about 10%. However, the experimental calculation of the beam
radius becomes quite sensitive, with increasing radius, to errors in
the measured irradiance as indicated by the presence of r to the third
power in the iutegral of the numerator of eq. 71. Since irradiance
errors at low level, such as in the wings of the beam, are generally
toward higher values, and overestimation of w? appears likely. There-
fore, we conclude that the turbulence-induced beam spread is satisfac-
torily predicted by our model. In particular, the influence of the

similarity parameter b = zA/kwg is well verified.

Figures 7 and 8 show similar results for beams focused at
f =3.13 and f = 4.41 respectively, The data were measured from
exposed photographs of the beam. The images were digitized and the

radii calculated with the formula

x

w? = f/dxdy(xz + y2) <I(x,y)> //dxdy <I(x,y)> . [72]

- 00 -

In this case, the agreement between the data and the predictions of our
model is excellent., The average beam radius passes through a minimum

which is considerably greater than the diffraction limit value equal to
(bf) and this occurs at a propagation distance appreciably shorter than

the focal length f. The magnitude of this effect and its dependence on

the parameter f are well predicted by our model as illustrated in
Figs. 7-8.
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FIGURE 7 - Normalized beam radius plotted versus normalized propagation
distance; f = 3.13, b = 0.0023, no = 8.5. [Q : data measured
in laboratory turbulence. — —————: finite-difference

) solution of eqs. 54 and 56.

LEN

FIGURE 8 - Normalized beam radius plotted versus normalized propagation
distance; £ = 4.41, b = 0.0021, no = 8.5. DO : data measured
in laboratory turbulence. —————: finite-difference
solution of eqs. 54 and 56.
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0 2 4 6 8 10 12
:,’:A

FIGURE 9 - Normalized irradiance standard deviation plotted versus
normalized propagation distance. Data measured in laboratory
turbulence on the axis of a 25-mm diameter collimated (f = =)
beam. 0:no = 4,0, b = 0.0020; A : ne = 5.3, b = 0.0015;
Vino=7.0,b=0,0011. —————: finite-difference solution
of eqs. 54 - 56, curve No 1 for no = 4.0, b = 0.0020 and
curve No 2 for n, = 7.0, b = 0,0011.

FIGURE 10 - lormalized irradiance standard deviation versus normalized
propagation distance. Data measured in the atmosphere and
reprinted from Fig. 19 of Ref. 7. finite-differ-
ence solution of eqs. 54-56 for plane waves (f = =, b = 0),
---: asymptotic solutions derived in Ref. 7.
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Figure 9 compares the irradiance standard-deviation duata measured
on the axis of collimated beams with the prediction of our model. These
results served to determine the empirical constant C of eqs. 52 and 62. To
verify that C is universal, the atmospheric data of Fig. 19 of Ref. 7 are
plotted in Fig. 10 and compared with our plane-wave solution. The
agreement is excellent. Thercfore, the results of Figs 9-10 show that
our model works very well under experimental conditions that are as far
apart as can be expected in practice. Indeed, the propagation distances
and the turbulence-strength parameters Cn's differ by more than two
orders of magnitude. Therefore, the empirical constant C can in fact

be considered universal with jo0od accuracy.

For comparison purposes, we have shown in Fig. 10 the asymptotic
solutions derived in Ref. 7 which are representative of the present
state of the art. We therefore see that our solutions agree much more
closely with data, particularly with regard to the slow return of the

data to the asymptotic saturation level of unity.

5.0 SIMPLIFIED SOLUTIONS

Although eqs. 54-56 together with the constitutive eqs. 60-62
are easily solved by numerical techniques, it is useful to consider
situations where approximate analytic solutions can be worked out.
Despite the necessary restrictive conditions under which these solutions
apply, the analytic expressions give helpful information regarding the
influence of the various parameters and the magnitude of the turbulence-

induced phenomena. One such simplification is afforded by the study of
untruncated Gaussian beams.

5.1 Average irradiance

For an initially Gaussian beam with the normalized average
amplitude given by
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_nl /D
<A> =e® /2 {73] !

it is straightforward to show that the solution of eq. 54 is

-02/202(n)

<A> = g(n) e s [74]

where

g(n) = L0 exp{-lfx(c)dc}, [75]
fa?(n) 2

o}

n
w2y = Dy 00D be En? b [76]

L (£-0)?

If turbulence-induced beam spreading dominates over diffraction-spreading

and if the condition

[Imag(c2)]2/[Real(02)]2 << 1 (77)

is satisfied, which occurs in most applications, eq. 56 for <aa*> can

be solved analytically and we find for the average irradiance
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ey
<I> = {1 - h(M[1 - o2/w2 ()]} e /W (n) , [78]
w2 (n)
where
, 0 4
h(n) = 2b (f-n) f dg Real[r(z)] exp{—/Real[}((é)]dE},
w? (n) £2 w2 (2) 3
© [79]
2 - 2
w2(n) = - Zb/ En)” peal [r(2)]dz. [80]
£2 (f-£)2

Equation 78 shows that the turbulence-spread Gaussian beam does
not truly conserve its Gaussian shape; too much irradiance is scattered
in the wings as inferred by the p2-term multiplying the exponential
function. However, in many practical applications, the similarity
parameter b is much smaller than unity and the function h(n) can be

neglected in eq. 78 to give

o-P2/WA(n)
<I> 2 —— M [81]
w2 (n)

An important simplification can be made to the proportionality
function R(n) if we assumed that n. << 1. This condition is almost
always satisfied for atmospheric propagation of optical and infrared
beams. For example, at X = 0.63 um, n, is equal to about 10'3 for very

strong turbulence (C - 10'6m-1/3 ) and smaller for weaker turbulence.
n

Under this condition, the asymptotic formula

cinden
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. .-1/6
lim H(y) = 2 r(5/6)(-iv) 1/ (82]
y=+0 6

can be substituted for H(y) in eq. 61 and we find

8/3 8/3 1/6
Real[R(n)] = 0.738~/P dy E = (=) %;g‘Y) e - (83]
A (£f-n) (f+n-2y) {n-y)

This integral cannot be worked out in terms of elementary transcendental
functions. However, for the following discussion, it suffices to consider

collimated beams, i.e. f = =, which yields

Real[R(n)] = 1.288 AN (84]

Upon substituting eq. 84 for R(n) in eq. 80, we therefore have for

collimated beams

17/6

w2(n) =1+ 0.909 b n [85]

Thus, the turbulence-induced beam spread predicted by our model and

valid under the conditions [77] and nho << 1 is given, in dimensional

variables, by
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2
/6 Cn -17/6

p2(z) = w2 + 0.909 KL [86]

n2
[o)

The beam-spread expression most often used in the literature
is that derived by Brown (Ref. 25) and Yura (Ref. 26). It is based on
the reasoning that the turbulence-induced beam spread can be no smaller
than that produced by a transmitter with an aperture equal to the

-3/5

‘oherence diameter po = (0.545 kzzCS/né) The formula given by

Yura 1is

2/5 Z16/5 12/5

(Cn/nq) [87]

We note that both ours and Brown's or Yura's expressions depend
on the same three parameters k, Cn/no and z. In particular, they are
independent of beam or aperture size which confirms the experimental
observation that turbulence spreading cannot be corrected by increasing
the transmitter aperture. However, the functional dependence on k,
Cn/no and : is slightly different in both cases. Our expression predicts

a weaker dependence on all three parameters.

Systematic turbulence beam-spread measurements were performed
by Dowling and Livingston (Ref. 27). For total far-field turbulence-

induced beam divergence, they proposed the following empirical regression
formula

6 ,1/3

2 -
] pL = 2.9 x 10

k y/ (cn/no)G/s. [88]
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Table | compares the predictions obtained from eqs. 86 and 87, i.e.

1/6 Z5/6

oY= 7.27 Kk (cn/nc,)2 , [89]

2/5 Z6/5 12/5

02 (C,/no) , [90]

15.44 k

with those of eq. 88 for the upper, middle and lower Cn values reported
in Ref., 27. Our model gives a somewhat more consistent fit to the
empirical formula. The discrepancies come mainly from our stronger Cn
dependence compared with that of eq. 88. However, it is shown in the
same Ref. 27 that the optical data (A = 0.63 um) are also well fitted
by a linear regression against Cﬁz which has the same Cn power as our
model and only a difference of 1/6 in the power of propagation distance.
Therefore, the beam-spread formula derived from the propagation model
of this report appears to be more precise than the generally used

formula of Brown and Yura, although more data with greater parameter

ranges are still needed.
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TABLE 1

Comparison of the theoretical beam-spread formula of this report

(OB, eq. 89) and that of Ref. 26 (Oy, eq. 90) with the empirical

regression formula (ODL’ eq. 88) proposed in Ref. 27. The propagation

distance z is 1750 m and the Cn—values correspond to the upper, middle

and lower turbulence levels reported in Ref. 27,

A = 0.63 um A =10.6 um
n ‘L % Oy °pL %p %
-1/3
(m ) (urad) (urad) (urad) (urad) (wrad) (urad)
143 147 239
108 92 136
41 18 20
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5.2 Irradiance variance

Under the same simplifying assumptions as used to derive eq. 81
for the average irradiance, it is easy to show from eqs. 54-5¢ and 70 that

the corresponding irradiance variance profile has the form

0-2 = F(ﬂ) e -Oz/wz(ﬂ) , [91]

where F(n) contains integrals that cannot be reduced to elementary
transcendental functions. However, the important conclusion from

eqs. 91 and 81 is that the normalized irradiance variance, o%/<1>2, is
independent of lateral position across the beam but varies with propa-
gation distance only. Within the experimental scatter, this is well

verified in our simulated turbulent medium.

For plane waves, the function F(n) of eq. 91 reduces to a
simple asymptotic formula valid for n < 1. The solution for the irra-

diance variance is thus

2
1

<I>2

7/6 Z11/6

2.76 k cﬁ/n% . [92]

Except for the numerical constant, this expression is identical with the !

perturbation result given by Tatarskii (Ref. 2), i.e.

(95) f

I ) 7/6 ,11/6 c2/nz r

1.23 k

<I>2
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Equation 92 corresponds to the weak-scintillation asymptote of the plane-

wave solution shown as the solid curve in Fig. 10 while Tatarskii's

3 solution, eq. 93, is plotted as the broken line through the origin in

the same figure. We thus see that either solution is equally justifiable
on the basis of the low-scintillation data of Fig. 10. Therefore, we

3 conclude that the propagation model proposed in this report is in good

agreement with the results of the classical perturbation theory.

6.0 CONCLUSION

The mathematical model of laser-beam propagation in turbulence
originally developed in Refs. 18 and 20 was extended to include focal-
ization. The model is in the form of a closed set of three simulta-
neous second-order partial differential equations for the complex-
amplitude moments of order one and two. The important and novel
characteristic of these equations is that they are numerically tractable

and uniformly valid for arbitrary scintillation levels.

The solutions were calculated with a finite-difference algorithm.
The agreement with measured average irradiance profiles for collimated

and focused beams is excellent. The predicted irradiance variance

i clearly shows supersaturation and is well verified by data ranging from
the perturbation to the asymptotic saturation regimes. An analytic
expression for the turbulence-induced spreading of Gaussian beams was
derived. Comparison with data showed that it is somewhat more precise
than the commonly used formula based on the concept of the coherence

i diameter p,. Finally, the irradiance variance solution in the weak-

scintillation limit agrees with the classical results of the perturbation

theory.
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Extension of the model to media with varying and/or nonlinear
average refractive index is straightforward. In particular, the thermal-
blooming effect in the presence of turbulence could be calculated with
only a small increase in computation time compared with the non-turbulent
case. The model could also be used to simulate the propagation of beams
corrected by adaptive systems. The principal requirement would be to
rederive the solutions for the functions K(z) and R(z) with the proper

boundary conditions on the covariance of the angle-of-arrival.
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